Greither-Pareigis theory, through the lens of algebraic geometry

Alan Koch

Agnes Scott College

May 21, 2018

Alan Koch (Agnes Scott College)

< 4 →

Outline

Motivation

2 Schemes

- 3 An Example
- 4 Greither-Pareigis to schemes
- 5 Application to separable case
- 6 Application to inseparable case

・ 同 ト ・ 三 ト ・

э

Let L/K be a separable extension of fields, normal closure *E*.

1986. Greither and Pareigis showed how one can classify/construct Hopf-Galois structures on L/K.

Let G = Gal(E/K), G' = Gal(E/L). Then one can classify Hopf-Galois structures by finding all regular subgroups $N \leq \text{Perm}(G/G')$ normalized by the action of conjugation by $\lambda(G) \leq \text{Perm}(G/G')$, where $\lambda(g)(xG') = (gx)G'$.

The beauty of their work is that it is entirely group theoretic.

Given $N \leq \text{Perm}(G/G')$, the Hopf algebra is $E[N]^G$, where G acts on E via Galois action and on N by $\lambda(G)$.

Suppose N_1, N_2 give Hopf-Galois structures.

- Under what conditions are the two Hopf algebras isomorphic? TARP has a very satisfying answer.
- Under what conditions are the two Hopf algebras isomorphic as K-algebras?

In general, much harder.

Results are known in certain cases, e.g., N abelian.

Purely Inseparable Analogue: Motivation II

At this conference...

Childs, 2013: Is there a Greither-Pareigis theory for purely inseparable extensions?

K., 2014: No.

There exist purely inseparable extensions with an infinite number of Hopf-Galois structures.

K., 2018: Maybe.

It is possible that the theory which begat Greither-Pareigis can generate a similar, but different, purely inseparable theory as well.

Using simple algebraic geometry.

Motivation

2 Schemes

- 3 An Example
- 4 Greither-Pareigis to schemes
- 5 Application to separable case
- 6 Application to inseparable case

・ 同 ト ・ 三 ト ・

э

Algebraic Geometry: A Survivor's Guide

An *affine scheme* (over K) is a representable functor \mathcal{X} from K-algebras to sets.

There exists a (commutative) K-algebra A such that $\mathcal{V}(B) = A \log_{10} (A, B)$ for all K algebras B. We say A repr

 $\mathcal{X}(B) = \operatorname{Alg}_{K}(A, B)$ for all *K*-algebras *B*. We say *A* represents \mathcal{X} and write $\mathcal{X} = \operatorname{Spec}(A)$.

The category of affine schemes is anti-equivalent to the category of K-algebras.

Example

$$A = \mathbb{Q}[x]/(x^3 + x), \ \mathcal{X} = \operatorname{Spec}(A)$$

$$\mathcal{X}(B) = \operatorname{Alg}_{\mathbb{Q}}(\mathbb{Q}[x]/(x^3+x), B) \leftrightarrow \{b \in B : b^3+b=0\}.$$

So, e.g., $\mathcal{X}(\mathbb{Q}) = \{0\}$, $\mathcal{X}(\mathbb{Q}(i)) = \{0, i, -i\}$, and $\mathcal{X}(\mathbb{C}^2) = \{(0,0), (0,i), (0,-i), (i,0), (i,i), (i,-i), (-i,0), (-i,i), (-i,-i)\}.$

イロト イ団ト イヨト イヨト

Algebraic Geometry: A Survivor's Guide II

An *affine group scheme* (over K) is a representable functor G from K-algebras to groups.

If $\mathcal{G} = \text{Spec}(H)$ then *H* is a *K*-Hopf algebra whose coalgebra structure provides the group operation.

 $f,g\in \mathcal{G}(B)=\operatorname{Alg}_{\mathcal{K}}(H,B)\Rightarrow (f*_{\mathcal{G}}g)(h)=\operatorname{mult}(f\otimes g)\Delta(h),\ h\in H.$

Example

$$\mathcal{G} = \operatorname{Spec}(H), \ H = \mathbb{Q}[x]/(x^3 - 1), \ \Delta(x) = x \otimes x.$$

$$\mathcal{G}(B) = \operatorname{Alg}_{\mathbb{Q}}(\mathbb{Q}[x]/(x^3-1), B) \leftrightarrow \{b \in B : b^3-1=0\}.$$

If f(x) = a, g(x) = b, $a, b \in B$ then

$$(f *_{\mathcal{G}} g)(x) = \operatorname{mult}(f \otimes g)\Delta(x) = f(x)g(x) = ab.$$

Thus the group operation is the usual multiplication in B.

We say a group scheme \mathcal{G} acts on a scheme \mathcal{X} if there is a morphism of schemes

$$\mathcal{G} \times \mathcal{X} \to \mathcal{X}.$$

That is, for each *K*-algebra *B* there is a group action

$$\mathcal{G}(B) \times \mathcal{X}(B) \to \mathcal{X}(B), \ (g, x) \mapsto g * x.$$

If $\mathcal{G} = \text{Spec}(H)$ and $\mathcal{X} = \text{Spec}(A)$ this corresponds to a *K*-algebra map

$$A \to A \otimes_{\mathcal{K}} H$$

which provides an *H*-comodule structure on *A*.

A Small Example of Everything

Let $K = \mathbb{Q}$.

Let $\mathcal{G} = \operatorname{Spec}(\mathbb{Q}[t]/(t^3 + 3t)), \ \Delta(t) = t \otimes 1 + 1 \otimes t + \frac{1}{2}t^2 \otimes t + \frac{1}{2}t \otimes t^2.$

Then, for a \mathbb{Q} -algebra B, $\mathcal{G}(B) = \{b \in B : b^3 + 3b = 0\}$ and

$$a +_{\mathcal{G}} b = a + b + \frac{1}{2}a^{2}b + \frac{1}{2}ab^{2}.$$

Let $\mathcal{X} = \text{Spec}(\mathbb{Q}(\sqrt[3]{2})).$

Then \mathcal{G} acts on \mathcal{X} via

$$g * x = x + \frac{1}{2}gx + \frac{1}{2}g^2x, \ g \in \mathcal{G}(B), x \in \mathcal{X}(B)$$

after identifying $\mathcal{G}(B)$, $\mathcal{X}(B)$ as subsets of *B*.

$|\mathcal{G} = \operatorname{\mathsf{Spec}}(\mathbb{Q}[t]/(t^3+3t)), \mathcal{X} = \operatorname{\mathsf{Spec}}(\mathbb{Q}(\sqrt[3]{2}))$

Example

Let $B = \mathbb{Q}(\sqrt[3]{2})$. Then

$$\mathcal{G}(B) = \{b \in \mathbb{Q}(B) : b^3 + 3b = 0\} = \{0\}$$
$$\mathcal{X}(B) = \mathsf{Alg}_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2}), B) = \{1\}$$

and the action is trivial.

イロト イ理ト イヨト イヨト

 $\overline{\mathcal{G}} = \operatorname{\mathsf{Spec}}(\overline{\mathbb{Q}}[t]/(t^3+3t)), \mathcal{X} = \operatorname{\mathsf{Spec}}(\mathbb{Q}(\sqrt[3]{2}))$

$$g +_{\mathcal{G}} h = g + h + \frac{1}{2}g^{2}h + \frac{1}{2}gh^{2}, \ g * x = x + \frac{1}{2}gx + \frac{1}{2}g^{2}x$$

Example

Let *E* be the splitting field of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} .

$$\mathcal{G}(E) = \{0, i\sqrt{3}, -i\sqrt{3}\}$$
$$\mathcal{X}(E) = \mathsf{Alg}_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2}), E) \leftrightarrow \{\sqrt[3]{2}, \zeta\sqrt[3]{2}, \zeta^2\sqrt[3]{2}\}$$

where $\zeta \in E$ is a primitive cube root of unity. Then, e.g.,

$$i\sqrt{3} * \sqrt[3]{2} = \sqrt[3]{2} + \frac{1}{2}(i\sqrt{3})(\sqrt[3]{2}) + \frac{1}{2}(i\sqrt{3})^2(\sqrt[3]{2})$$
$$= \sqrt[3]{2}\left(\frac{-1 - i\sqrt{3}}{2}\right) = \zeta^2\sqrt[3]{2}.$$

Suppose \mathcal{G} acts on \mathcal{X} . We say \mathcal{X} is a *principal homogenous space* if $\mathcal{X}(B) \neq \emptyset$ for some *B* and the map

$$egin{aligned} \mathcal{G} imes \mathcal{X} &
ightarrow \mathcal{X} \ (m{g},m{x}) \mapsto (m{g} st m{x},m{x}), \ m{g} \in \mathcal{G}(m{B}), \ m{x} \in \mathcal{X}(m{B}) \end{aligned}$$

is a bijection for all K-algebras B.

If $\mathcal{G} = \operatorname{Spec}(H)$ and $\mathcal{X} = \operatorname{Spec}(A)$ the corresponding isomorphism of *K*-algebras is the map $A \otimes A \to A \otimes H$ found in the definition of *H*-Galois object.

The action on the previous example makes \mathcal{X} a *PHS* for \mathcal{G} .

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\mathcal{G} imes \mathcal{X} o \mathcal{X} imes \mathcal{X}, \; (g, x) o (g * x, x)$

Suppose \mathcal{X} is a PHS for \mathcal{G} , and $f : \mathcal{G} \times \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ be the bijection above.

Fix a *K*-algebra *B*, and write $G = \mathcal{G}(B)$, $X = \mathcal{X}(B)$.

f is injective. Suppose g * x = x for some $g \in G, x \in X$. Then $f((g, x)) = (x, x) = f((1_G, x))$, so $g = 1_G$ and the stabilizer of any element of *X* is trivial.

f is surjective. Pick $x, y \in X$. There exists a $(g, z) \in G \times X$ such that f((g, z)) = (y, x). Clearly, z = x and g * x = y. Thus the action of *G* on *X* is transitive.

f is bijective. |G| = #X.

This looks a lot like Greither-Pareigis theory.

Motivation

2 Schemes

- 4 Greither-Pareigis to schemes
- 5 Application to separable case
- 6 Application to inseparable case

< 17 ▶

.

Let K be a field of characteristic 2.

Let
$$L = K(x)$$
 where $x^4 = x + 1$ and $[L : K] = 4$.

Then L/K is Galois with $G = Gal(L/K) = \langle g \rangle \cong C_4$, $g(x) = x^2 + 1$.

-∢ ∃ >

$L = K(x), x^4 = x + 1, G = \langle g \rangle$, Regular Subgroup I

Let $N = \rho(G) \leq \text{Perm}(G)$ (here $\rho(g^i)[g^j] = g^{j-i}$ is right regular representation).

Then $H = L[\rho(G)]^G = K[\rho(G)] \cong K[G]$ since $\lambda(g^i)\rho(g^j) = \rho(g^j)\lambda(g^j)$.

Let $\mathcal{N} = \operatorname{Spec}(H^*) = \operatorname{Spec}(K[G]^*), \ \mathcal{X} = \operatorname{Spec}(L).$

$$\mathcal{N}(L) = \operatorname{Alg}_{K}(K[N]^{*}, L) \cong \operatorname{Alg}_{L}(L[N]^{*}, L) \cong N \text{ via } (f \mapsto f(\eta)) \leftrightarrow \eta$$
$$\mathcal{X}(L) = \operatorname{Alg}_{K}(L, L) = \operatorname{Gal}(L/K) = G.$$

So *N* and *G* arise "organically" as the *L*-valued points of \mathcal{N} and \mathcal{X} respectively.

L is an H-comodule via:

$$x\mapsto \sum_{k=0}^{3}(\rho(g^{k}))^{-1}[1_{G}]\cdot x\otimes \varepsilon_{k}=\sum_{k=0}^{3}g^{k}(x)\otimes \varepsilon_{k}$$

where $\varepsilon_k \in H^*$ is defined by $\varepsilon_k(\rho(g^j)) = \delta_{k,j}$.

The induced action on group schemes is

$$(\rho(g^i)*g^j)(x) = \sum_{k=0}^3 g^j(g^k(x)) \otimes \varepsilon_k(\rho(g^i)) = g^{j+i}(x),$$

and so $\rho(g^i) * g^j = g^{j+i}$, which differs from the original action of $N \leq \text{Perm}(G)$ on $G: \rho(g^i)[g^j] = g^{j-i}$.

Therefore, $\rho(g^{i}) * g^{j} = (\rho(g^{i})^{-1})[g^{j}].$

$$L = K(x), \ x^4 = x + 1, \ G = \langle g \rangle$$
, Regular Subgroup II

Let

$$\begin{array}{ll} \eta(1_G) = g & \eta(g) = 1_G & \eta(g^2) = g^3 & \eta(g^3) = g^2 \\ \pi(1_G) = g^2 & \pi(g) = g^3 & \pi(g^2) = 1_G & \pi(g^3) = g \\ \eta\pi(1_G) = g^3 & \eta\pi(g) = g^2 & \eta\pi(g^2) = g & \eta\pi(g^3) = 1_G \end{array}$$

and let $N = \langle \eta, \pi \rangle \leq \text{Perm}(G)$. Then *N* is regular, and *G* acts on *N* via

$$g_{\eta} = \eta \pi$$
 $g_{\pi} = \pi$ $g(\eta \pi) = \eta.$

- (E

$\eta = (1 \ g)(g^2 \ g^3), \pi = (1 \ g^2)(g \ g^3), \ \eta \pi = (1 \ g^3)(g \ g^2)$

Let $h_0, h_1, h_2, h_3 \in H = L[N]^G$ be given by

$$\begin{aligned} h_0 &= 1 & h_1 &= \eta + \eta \pi \\ h_2 &= \pi & h_3 &= (x + x^2) + (1 + x + x^2) \eta \pi. \end{aligned}$$

Then *H* has basis $\{h_0, h_1, h_2, h_3\}$. Furthermore,

 $h_0 \cdot x = x$ $h_1 \cdot x = 1$ $h_2 \cdot x = x + 1$ $h_3 \cdot x = x$.

Let $\varepsilon_i \in H^*$, $0 \le i \le 3$ be given by $\varepsilon_i(h_j) = \delta_{i,j}$.

$$h_0 = 1, h_1 = \eta + \eta \pi, h_2 = \pi, h_3 = (x + x^2) + (1 + x + x^2)\eta \pi$$

Let $\mathcal{N} = \text{Spec}(H^*)$ and $\mathcal{X} = \text{Spec}(L)$. Recall $\mathcal{X}(L) = G$; furthermore,

 $\mathcal{N}(L) = \mathrm{Alg}_{\mathcal{K}}(H^*, L) \cong \mathrm{Alg}_{L}(L \otimes H^*, L) \cong \mathrm{Alg}_{L}(L[N]^*, L) \cong N,$

analogous to the classical case.

The nature of the isomorphism $L \otimes H^* \cong L[N]^*$ (or $L \otimes H \cong L[N]$) is important when considering the group scheme action of \mathcal{N} on \mathcal{X} .

$$h_0 = 1, h_1 = \eta + \eta \pi, h_2 = \pi, h_3 = (x + x^2) + (1 + x + x^2) \eta \pi$$

In $L \otimes H = LH$ we have:

$$egin{aligned} 1_N &= h_0 \ \eta &= (1+x+x^2)h_1 + h_3 \ \pi &= h_2 \ \eta \pi &= (x+x^2)h_1 + h_3. \end{aligned}$$

Thus $\varepsilon_i(1_N) = \delta_{i,0}, \ \varepsilon_i(\pi) = \delta_{i,2}$, and

$$\varepsilon_i(\eta) = \begin{cases} 0 & i = 0, 2\\ 1 + x + x^2 & i = 1\\ 1 & i = 3 \end{cases}, \quad \varepsilon_i(\eta \pi) = \begin{cases} 0 & i = 0, 2\\ x + x^2 & i = 1\\ 1 & i = 3 \end{cases}$$

22/37

.

æ

イロト イヨト イヨト イヨト

$\varepsilon_1(\eta) = 1 + x + x^2, \ \varepsilon_3(\eta) = 1, \ \varepsilon_0(\eta) = \varepsilon_2(\eta) = 0$

L is an H-Galois object via

$$egin{aligned} x\mapsto (h_0\cdot x)\otimes arepsilon_0+(h_1\cdot x)\otimes arepsilon_1+(h_2\cdot x)\otimes arepsilon_2+(h_3\cdot x)\otimes arepsilon_3\ &=x\otimes arepsilon_0+1\otimes arepsilon_1+(x+1)\otimes arepsilon_2+x\otimes arepsilon_3, \end{aligned}$$

and the action of $\mathcal{N}(L)$ on $\mathcal{X}(L)$ satisfies

$$\begin{aligned} (\eta * \mathbf{1}_G)(x) &= x\varepsilon_0(\eta) + \varepsilon_1(\eta) + (x+1)\varepsilon_2(\eta) + x\varepsilon_3(\eta) \\ &= \varepsilon_1(\eta) + x\varepsilon_3(\eta) \\ &= (1+x+x^2) + x \\ &= x^2 + 1 = g(x). \end{aligned}$$

Thus, $\eta * 1_G = g$. More generally, the action of $\mathcal{N}(L)$ on $\mathcal{X}(L)$ is precisely the same action we find in $N \leq \text{Perm}(G)$. Since every element of N is self-inverse, this action is consistent with

the previous example.

Alan Koch (Agnes Scott College)

▲圖▶ ▲ 国▶ ▲ 国≯

Motivation

2 Schemes

- 3 An Example
- 4 Greither-Pareigis to schemes
- 5 Application to separable case
- 6 Application to inseparable case

< 4 →

- E 🕨

General Theory

As before, let L/K be separable, G = Gal(E/K), G' = Gal(E/L). Let $N \leq \text{Perm}(G/G')$ regular, normalized by G, and $H = E[N]^G$. Let $\{h_0, h_1, \ldots, h_{n-1}\}$ be a *K*-basis for *H*, dual basis $\{\varepsilon_0, \ldots, \varepsilon_{n-1}\}$. For each $\eta_i \in N$, write $\eta_i = \sum_{i=0}^{n-1} a_{i,i} h_i$, $a_{i,i} \in E$. Let $\mathcal{N} = \operatorname{Spec}(H^*)$, $\mathcal{X} = \operatorname{Spec}(E)$. Then $\mathcal{N}(E) = N$ and $\mathcal{X}(E) = G$. The (regular) action of $\mathcal{N}(E)$ on $\mathcal{X}(E)$ is

$$(\eta * g)(x) = \sum_{i=0}^{n-1} g(h_i \cdot x) \varepsilon_i(\eta) = \sum_{i=0}^{n-1} g(h_i \cdot x) a_{i,j}.$$

Claim. $\eta * g = \eta^{-1}[g]$.

く 戸 と く ヨ と く ヨ と

Claim. $\eta * g = \eta^{-1}[g]$.

Keep $\eta_j = \sum_{i=0}^{n-1} a_{i,j} h_i$, $a_{i,j} \in E$, and write $h_i = \sum_{j=0}^{n-1} b_{i,j} \eta_j$, $b_{i,j} \in E$. Let $A = [a_{i,j}]$, $B = [b_{i,j}]$. Then $A^T B = I$, so

$$a_{1,j}b_{1,k} + a_{2,j}b_{2,k} + \cdots + a_{n,j}b_{n,k} = \delta_{j,k}.$$

Now for $x \in L$ we have

$$(\eta_j * \mathbf{1}_G)(x) = \sum_{i=0}^{n-1} (h_i \cdot x) \varepsilon_i(\eta_j)$$

= $\sum_{i=0}^{n-1} \sum_{k=0}^{n-1} b_{i,k} \eta_k^{-1} [\mathbf{1}_G](x) \varepsilon_i(\eta_j)$
= $\left(\sum_{i=0}^{n-1} \sum_{k=0}^{n-1} a_{i,j} b_{i,k}\right) \eta_k^{-1} [\mathbf{1}_G](x)$
= $\eta_j^{-1} [\mathbf{1}_G](x).$

(日)

Motivation

2 Schemes

- 3 An Example
- 4 Greither-Pareigis to schemes
- 5 Application to separable case
- 6 Application to inseparable case

< 4 →

- E 🕨

-

Let $N_1, N_2 \leq \text{Perm}(G/G')$ be regular subgroups normalized by G.

Are
$$E[N_1]^G \cong E[N_2]^G$$
 as *K*-algebras?

We have answers to these types of questions, particularly when N_1 , N_2 abelian (esp. cyclic); as well as when $N_1 = \rho(G)$, $N_2 = \lambda(G)$.

Problem. In its full generality, this seems like a fairly difficult problem.

Separable Algebras, char K = 0

There exists a way to classify all separable algebras.

Let *A* be a separable algebra, and let $\mathcal{X} = \text{Spec}(A)$.

Let $X_A = \mathcal{X}(K^{\text{sep}}) = \text{Alg}_K(A, K^{\text{sep}})$, where K^{sep} is the separable closure of K.

Let $\Gamma = \text{Gal}(K^{\text{sep}}/K)$. Then Γ acts on X_A via $(\gamma f)(a) = \gamma(f(a))$.

Furthermore, this action is continuous (the action factors through finite Galois extensions of K).

There is a one-to-one correspondence

 $\begin{array}{cccc} \{ \text{Separable } K \text{-algebras} \} & \leftrightarrow & \{ \text{finite sets on which } \Gamma \text{ acts continuously} \} \\ & A & \mapsto & X_A \\ & F^{\text{Sta} x_0} & \leftarrow & X = \Gamma x_0 \text{ (single orbit case)} \end{array} \end{array}$

with *F* a finite extension of *K* such that the action of Γ factors through Gal(F/K).

Given $N \leq \text{Perm}(G)$ as usual, let $H = E[N]^G$.

If *N* is not abelian, then *H* may not be a separable *K*-algebra.

But H^* is separable since H is cocommutative.

Thus, H^* corresponds to a finite Γ -set, namely $\mathcal{N}(K^{sep})$ where $\mathcal{N} = \text{Spec}(H^*)$ as before.

Note $\mathcal{N}(K^{sep}) = \mathcal{N}(E) \cong N$, and the action of Γ on $\mathcal{N}(E)$ factors through *G*.

So N_1, N_2 give isomorphic *K*-coalgebras (i.e., the dual to their Hopf algebras are isomorphic as *K*-algebras) if and only if N_1 and N_2 are isomorphic as Γ -sets, or simply as *G*-sets.

$$\mathcal{N}(E) = \operatorname{Alg}_{\mathcal{K}}(H^*, E) \cong \operatorname{Alg}_{E}(E \otimes H^*, E) \cong \operatorname{Alg}_{E}(E[N]^*, E) \cong N$$

Let $N = \{\eta_i\}$. Let $\{h_i\}$ be a *K*-basis for *H*, and $\{\varepsilon_i\}$ the dual basis for H^* (as well as $(E \otimes H)^*$). Under the isomorphism above $\eta \in N$ corresponds to the algebra map $(E \otimes H)^* \to E$ obtained by evaluating at η . Set

$$\eta_j = \sum_{i=0}^{n-1} a_{i,j} h_i$$
, so $\varepsilon_i(\eta_j) = a_{i,j} \in E$.

Then $\mathcal{N}(E) = \operatorname{Alg}_{\mathcal{K}}(H^*, E) = \{f_j\}$ where $f_j(\varepsilon_i) = a_{i,j}$.

 $\mathcal{N}(E) = \operatorname{Alg}_{\mathcal{K}}(H^*, E) = \{f_j\}$ where $f_j(\varepsilon_i) = a_{i,j}$

However,

$${}^{g}\eta_{j} = {}^{g}\left(\sum_{i=0}^{n-1}a_{i,j}h_{i}\right) = \sum_{i=0}^{n-1}g(a_{i,j})h_{i}.$$

Thus, if $g_{\eta_j} = \eta_k$ we have $a_{i,k} = g(a_{i,j})$ for all *i*.

Then G acts on $\mathcal{N}(E)$ by $(g \cdot f_j)(\varepsilon_i) = g(a_{i,j}) = a_{i,k} = f_k(\varepsilon_i)$, i.e., $g \cdot f_j = f_k$ iff ${}^g \eta_j = \eta_k$.

And I'm sure that this makes sense.

Motivation

2 Schemes

- 3 An Example
- 4 Greither-Pareigis to schemes
- 5 Application to separable case
- 6 Application to inseparable case

< 4 →

э

Question

Let L/K be purely inseparable, $\mathcal{X} = \text{Spec}(L)$. Given a PHS \mathcal{X} for \mathcal{G} , can we "evaluate" both functors at some field and look for regular subgroups?

Problem. *K*^{sep} doesn't work.

Example

Let $K = \mathbb{F}_p((T))$, L = K(x), $x^p = T$. Let $\alpha_p = \text{Spec}(H)$, where $H = K[t]/(t^p)$, $\Delta(t) = t \otimes 1 + 1 \otimes t$. Then $\mathcal{X} := \text{Spec}(L)$ is a PHS for α_p via

$$g * x = g + x$$

for $g \in \alpha_p(B) = \{b \in B : b^p = 0\}, x \in \mathcal{X} = \{b \in B : b^p = T\}$. But $\alpha(F) = \operatorname{Alg}_{\mathcal{K}}(H, F)$ is trivial for F a field extension of \mathcal{K} .

< ロ > < 同 > < 回 > < 回 >

... perhaps \mathcal{G} and \mathcal{X} can be evaluated for some other *K*-algebra.

Example

Let
$$K = \mathbb{F}_p((T))$$
, $L = K(x)$, $x^p = T$, $\alpha_p = \text{Spec}(H)$, $H = K[t]/(t^p)$.
Let

$$B = L[y]/(y^{p}) = K[x,y]/(x^{p}-T,y^{p}).$$

$$\alpha_p(B) = \{b \in B : b^p = 0\} = yB \text{ (group under } +_B)$$
$$\mathcal{X}(B) = \{b \in B : b^p = T\} = x + yB$$

The action is addition in *B*, and one can view *yB* as a regular subgroup of Perm(x + yB).

A (10) > A (10) > A (10)

Let L/K be a finite normal modular extension of exponent *e*.

Let $B = L[y]/(y^{p^e+1})$.

The Heerema-Galois group is defined to be

 $HG(L/K) = \operatorname{Aut}_{K[y]}(L[y]).$

Battiston (Proc. AMS, 2017) gives a theory of Galois descent for finite inseparable extensions using HG(L/K).

Perhaps $L[y]/(y^{p^e+1})$ (or $L[y]/(y^{p^e})$) is a useful analogue for K^{sep} .

Thank you.

æ

イロト イヨト イヨト イヨト